skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chiesa, Alessandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of chirality in determining the spin dynamics of photoinduced electron transfer in donor-acceptor molecules remains an open question. Although chirality-induced spin selectivity (CISS) has been demonstrated in molecules bound to substrates, experimental information about whether this process influences spin dynamics in the molecules themselves is lacking. Here we used time-resolved electron paramagnetic resonance spectroscopy to show that CISS strongly influences the spin dynamics of isolated covalent donor–chiral bridge–acceptor (D-Bχ-A) molecules in which selective photoexcitation of D is followed by two rapid, sequential electron-transfer events to yield D•+-Bχ-A•–. Exploiting this phenomenon affords the possibility of using chiral molecular building blocks to control electron spin states in quantum information applications. 
    more » « less
  2. Ledger-based systems that support rich applications often suffer from two limitations. First, validating a transaction requires re-executing the state transition that it attests to. Second, transactions not only reveal which application had a state transition but also reveal the application's internal state. We design, implement, and evaluate ZEXE, a ledger-based system where users can execute offline computations and subsequently produce transactions, attesting to the correctness of these computations, that satisfy two main properties. First, transactions hide all information about the offline computations. Second, transactions can be validated in constant time by anyone, regardless of the offline computation. The core of ZEXE is a construction for a new cryptographic primitive that we introduce, decentralized private computation (DPC) schemes. In order to achieve an efficient implementation of our construction, we leverage tools in the area of cryptographic proofs, including succinct zero knowledge proofs and recursive proof composition. Overall, transactions in ZEXE are 968 bytes regardless of the offline computation, and generating them takes less than a minute plus a time that grows with the offline computation. We demonstrate how to use ZEXE to realize privacy-preserving analogues of popular applications: private decentralized exchanges for user-defined fungible assets and regulation-friendly private stablecoins. 
    more » « less
  3. null (Ed.)
  4. Abstract Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single‐molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality‐induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin‐to‐charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality‐induced spin selectivity effect could enable initialization, manipulation, and single‐spin readout of molecular qubits and qudits even at relatively high temperatures. 
    more » « less